CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.

نویسندگان

  • S Atis
  • S Saha
  • H Auradou
  • J Martin
  • N Rakotomalala
  • L Talon
  • D Salin
چکیده

Autocatalytic reaction fronts between two reacting species in the absence of fluid flow, propagate as solitary waves. The coupling between autocatalytic reaction front and forced simple hydrodynamic flows leads to stationary fronts whose velocity and shape depend on the underlying flow field. We address the issue of the chemico-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Towards that purpose, we perform experiments over a wide range of flow velocities with the well characterized iodate arsenious acid and chlorite-tetrathionate autocatalytic reactions in transparent packed beads porous media. The characteristics of these porous media such as their porosity, tortuosity, and hydrodynamics dispersion are determined. In a pack of beads, the characteristic pore size and the velocity field correlation length are of the order of the bead size. In order to address these two length scales separately, we perform lattice Boltzmann numerical simulations in a stochastic porous medium, which takes into account the log-normal permeability distribution and the spatial correlation of the permeability field. In both experiments and numerical simulations, we observe stationary fronts propagating at a constant velocity with an almost constant front width. Experiments without flow in packed bead porous media with different bead sizes show that the front propagation depends on the tortuous nature of diffusion in the pore space. We observe microscopic effects when the pores are of the size of the chemical front width. We address both supportive co-current and adverse flows with respect to the direction of propagation of the chemical reaction. For supportive flows, experiments and simulations allow observation of two flow regimes. For adverse flow, we observe upstream and downstream front motion as well as static front behaviors over a wide range of flow rates. In order to understand better these observed static state fronts, flow experiments around a single obstacle were used to delineate the range of steady state behavior. A model using the "eikonal thin front limit" explains the observed steady states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Analytical Investigation of Forced Convection in Thermally Developed Region of a Channel Partially Filled with an Asymmetric Porous Material- LTNE Model

In present work forced convection flow in a channel partly filled with a porous media under asymmetric heat flux boundary condition has been investigated. The porous material is distributed on the one wall. Darcy–Brinkman and LTNE model have been assumed in order to solve momentum and energy equations, respectively. Fully developed conditions are considered in order to solve velocity and the te...

متن کامل

DISPERSION OF CONTAMINANTS IN GROUNDWATER WITH CHEMICAL REACTION

A mathematical model presented in this paper describes the dispersion and concentration ofcontaminants (fine and coarse) in porous medium with the effect of chemical reaction. Solutetransport in porous media is discussed by means of advection-dispersion equation. The effectof particle mass parameter and reaction rate parameter on the dispersion coefficient and meanconcentration of a chemical so...

متن کامل

Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study.

We present a comprehensive computational study of the short-time transport properties of bidisperse hard-sphere colloidal suspensions and the corresponding porous media. Our study covers bidisperse particle size ratios up to 4 and total volume fractions up to and beyond the monodisperse hard-sphere close packing limit. The many-body hydrodynamic interactions are computed using conventional Stok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2012